13 research outputs found

    Altered pituitary morphology as a sign of benign hereditary chorea caused by TITF1/NKX2.1 mutations

    Get PDF
    Benign hereditary chorea (BHC) is a rare genetically heterogeneous movement disorder, in which conventional neuroimaging has been reported as normal in most cases. Cystic pituitary abnormalities and features of empty sella have been described in only 7 patients with BHC to date. We present 4 patients from 2 families with a BHC phenotype, 3 of whom underwent targeted pituitary MR imaging and genetic testing. All four patients in the two families displayed a classic BHC phenotype. The targeted pituitary MR imaging demonstrated abnormal pituitary sella morphology. Genetic testing was performed in three patients, and showed mutations causing BHC in three of the patients, as well as identifying a novel nonsense mutation of the TITF1/NKX2-1 gene in one of the patients. The presence of the abnormal pituitary sella in two affected members of the same family supports the hypothesis that this sign is a distinct feature of the BHC phenotype spectrum due to mutations in the TITF1 gene. Interestingly, these abnormalities seem to develop in adult life and are progressive. They occur in at least 26% of patients affected with Brain-lung-thyroid syndrome. As a part of the management of these patients we recommend to perform follow-up MRI brain with dedicated pituitary imaging also in adult life as the abnormality can occur years after the onset of chorea

    A Modality-Adaptive Method for Segmenting Brain Tumors and Organs-at-Risk in Radiation Therapy Planning

    Get PDF
    In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.Comment: corrected one referenc

    A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning

    Get PDF
    In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy

    Early MRI Predictors of Relapse in Primary Central Nervous System Lymphoma Treated with MATRix Immunochemotherapy

    Get PDF
    Primary Central Nervous System Lymphoma (PCNSL) is a highly malignant brain tumour. We investigated dynamic changes in tumour volume and apparent diffusion coefficient (ADC) measurements for predicting outcome following treatment with MATRix chemotherapy in PCNSL. Patients treated with MATRix (n = 38) underwent T1 contrast-enhanced (T1CE) and diffusion-weighted imaging (DWI) before treatment, after two cycles and after four cycles of chemotherapy. Response was assessed using the International PCNSL Collaborative Group (IPCG) imaging criteria. ADC histogram parameters and T1CE tumour volumes were compared among response groups, using one-way ANOVA testing. Logistic regression was performed to examine those imaging parameters predictive of response. Response after two cycles of chemotherapy differed from response after four cycles; of the six patients with progressive disease (PD) after four cycles of treatment, two (33%) had demonstrated a partial response (PR) or complete response (CR) after two cycles. ADCmean at baseline, T1CE at baseline and T1CE percentage volume change differed between response groups (0.005 < p < 0.038) and were predictive of MATRix treatment response (area under the curve: 0.672–0.854). Baseline ADC and T1CE metrics are potential biomarkers for risk stratification of PCNSL patients early during remission induction therapy with MATRix. Standard interim response assessment (after two cycles) according to IPCG imaging criteria does not reliably predict early disease progression in the context of a conventional treatment approach

    1 Visual Computing for Medicine Group and 3 WSI/GRIS

    No full text
    result after six iterations, taking about 76s on a PC with a P3 @ 850 MHz. Segmentation of the tracheo-bronchial tree of the lungs is notoriously difficult. This is due to the fact that the small size of some of the anatomical structures are subject to partial volume effects. Furthermore, the limited intensity contrast between the participating materials (air, blood, and tissue) increases the segmentation difficulties. In this paper, we propose a hybrid segmentation method which is based on a pipeline of three segmentation stages to extract the lower airways down to the seventh generation of the bronchi. User interaction is limited to the specification of a seed point inside the easily detectable trachea at the upper end of the lower airways. Similarly, the complementary vascular tree of the lungs can be segmented. Furthermore, we modified our virtual endoscopy system to visualize the vascular and airway system of the lungs along with other features, such as lung tumors

    From research to clinical practice: a European neuroradiological survey on quantitative advanced MRI implementation

    Get PDF
    Objective: Quantitative MRI (qMRI) methods provide versatile neuroradiological applications and are a hot topic in research. The degree of their clinical implementation is however barely known. This survey was created to illuminate which and how qMRI techniques are currently applied across Europe. Methods: In total, 4753 neuroradiologists from 27 countries received an online questionnaire. Demographic and professional data, experience with qMRI techniques in the brain and head and neck, usage, reasons for/against application, and knowledge of the QIBA and EIBALL initiatives were assessed. Results: Two hundred seventy-two responders in 23 countries used the following techniques clinically (mean values in %): DWI (82.0%, n = 223), DSC (67.3%, n = 183), MRS (64.3%, n = 175), DCE (43.4%, n = 118), BOLD-fMRI (42.6%, n = 116), ASL (37.5%, n = 102), fat quantification (25.0%, n = 68), T2 mapping (16.9%, n = 46), T1 mapping (15.1%, n = 41), PET-MRI (11.8%, n = 32), IVIM (5.5%, n = 15), APT-CEST (4.8%, n = 13), and DKI (3.3%, n = 9). The most frequent usage indications for any qMRI technique were tissue differentiation (82.4%, n = 224) and oncological monitoring (72.8%, n = 198). Usage differed between countries, e.g. ASL: Germany (n = 13/63; 20.6%) vs. France (n = 31/40; 77.5%). Neuroradiologists endorsed the use of qMRI because of an improved diagnostic accuracy (89.3%, n = 243), but 50.0% (n = 136) are in need of better technology, 34.9% (n = 95) wish for more communication, and 31.3% need help with result interpretation/generation (n = 85). QIBA and EIBALL were not well known (12.5%, n = 34, and 11.0%, n = 30). Conclusions: The clinical implementation of qMRI methods is highly variable. Beyond the aspect of readiness for clinical use, better availability of support and a wider dissemination of guidelines could catalyse a broader implementation. Key Points: • Neuroradiologists endorse the use of qMRI techniques as they subjectively improve diagnostic accuracy. • Clinical implementation is highly variable between countries, techniques, and indications. • The use of advanced imaging could be promoted through an increase in technical support and training of both doctors and technicians
    corecore